Skip to content

Loadcell

Module for interfacing with Loadcell amplifiers.

This module provides implements reading force/moment data from a 6-axis loadcell using DAQs by the Neurobionics lab, and Dephy.

Classes:

Name Description
LoadcellNotRespondingException

Exception raised when the load cell does not respond.

DEPHY_AMPLIFIER_MEMORY_CHANNELS

Enum representing memory channel addresses for load cell readings.

DephyLoadcellAmplifier

Read and process force/moment data from a 6-axis load cell with a DAQ by Dephy.

NBLoadcellDAQ

Read and process force/moment data from a 6-axis load cell with DAQs by Neurobionics Lab.

Dependencies
  • numpy
  • smbus2
  • spidev
  • opensourceleg.logging
  • opensourceleg.sensors.base
  • opensourceleg.sensors.adc

DEPHY_AMPLIFIER_MEMORY_CHANNELS

Bases: int, Enum

Enumeration of memory channel addresses used by the load cell.

Each channel corresponds to a specific high or low byte of the ADC data.

Source code in opensourceleg/sensors/loadcell.py
class DEPHY_AMPLIFIER_MEMORY_CHANNELS(int, Enum):
    """
    Enumeration of memory channel addresses used by the load cell.

    Each channel corresponds to a specific high or low byte of the ADC data.
    """

    CH1_H = 8
    CH1_L = 9
    CH2_H = 10
    CH2_L = 11
    CH3_H = 12
    CH3_L = 13
    CH4_H = 14
    CH4_L = 15
    CH5_H = 16
    CH5_L = 17
    CH6_H = 18
    CH6_L = 19

DephyLoadcellAmplifier

Bases: LoadcellBase

Implementation of a load cell sensor using the Dephy Loadcell Amplifier.

This class communicates with the Dephy strain amplifier. It can connect via either I2C using the SMBus interface, or using custom data callbacks. It processes the raw ADC data, and computes forces (Fx, Fy, Fz) and moments (Mx, My, Mz) based on a provided calibration matrix and hardware configuration.

Class Attributes

ADC_RANGE (int): The maximum ADC value (212 - 1). OFFSET (float): The ADC mid-scale offset (half of 212).

Source code in opensourceleg/sensors/loadcell.py
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
class DephyLoadcellAmplifier(LoadcellBase):
    """
    Implementation of a load cell sensor using the Dephy Loadcell Amplifier.

    This class communicates with the Dephy strain amplifier.
    It can connect via either I2C using the SMBus interface, or using custom data callbacks.
    It processes the raw ADC data, and computes forces (Fx, Fy, Fz) and moments (Mx, My, Mz)
    based on a provided calibration matrix and hardware configuration.

    Class Attributes:
        ADC_RANGE (int): The maximum ADC value (2**12 - 1).
        OFFSET (float): The ADC mid-scale offset (half of 2**12).
    """

    ADC_RANGE = 2**12 - 1
    OFFSET = 2**12 / 2

    def __init__(
        self,
        calibration_matrix: npt.NDArray[np.double],
        tag: str = "DephyLoadcellAmplifier",
        amp_gain: float = 125.0,
        exc: float = 5.0,
        bus: int = 1,
        i2c_address: int = 0x66,
        offline: bool = False,
        enable_diagnostics: bool = True,
    ) -> None:
        """
        Initialize the Dephy loadcell amplifier.

        Validates the provided parameters and initializes internal variables for data
        acquisition, calibration, and streaming.

        Args:
            calibration_matrix (npt.NDArray[np.double]): A 6x6 calibration matrix.
            tag (str, optional): A tag for identifying the load cell instance. Defaults to "DephyLoadcellAmplifier".
            amp_gain (float, optional): Amplifier gain; must be greater than 0. Defaults to 125.0.
            exc (float, optional): Excitation voltage; must be greater than 0. Defaults to 5.0.
            bus (int, optional): I2C bus number to use. Defaults to 1.
            i2c_address (int, optional): I2C address of the strain amplifier. Defaults to 0x66.

        Raises:
            TypeError: If calibration_matrix is not a 6x6 array.
            ValueError: If amp_gain or exc are not greater than 0.
        """
        super().__init__(tag=tag, offline=offline)

        # Validate input parameters.
        if calibration_matrix.shape != (6, 6):
            LOGGER.info(f"[{self.__repr__()}] calibration_matrix must be a 6x6 array of np.double.")
            raise TypeError("calibration_matrix must be a 6x6 array of np.double.")
        if amp_gain <= 0:
            LOGGER.info(f"[{self.__repr__()}] amp_gain must be a floating point value greater than 0.")
            raise ValueError("amp_gain must be a floating point value greater than 0.")
        if exc <= 0:
            LOGGER.info(f"[{self.__repr__()}] exc must be a floating point value greater than 0.")
            raise ValueError("exc must be a floating point value greater than 0.")

        self._amp_gain: float = amp_gain
        self._exc: float = exc

        self._bus = bus
        self._i2c_address = i2c_address

        self._calibration_matrix = calibration_matrix

        self._data: npt.NDArray[np.double] = np.zeros(shape=(1, 6), dtype=np.double)
        self._prev_data: npt.NDArray[np.double] = self._data
        self._failed_reads = 0

        self._calibration_offset: npt.NDArray[np.double] = np.zeros(shape=(1, 6), dtype=np.double)
        self._zero_calibration_offset: npt.NDArray[np.double] = self._calibration_offset
        self._is_calibrated: bool = False
        self._is_streaming: bool = False
        self._enable_diagnostics: bool = enable_diagnostics
        self._data_potentially_invalid: bool = False
        if self._enable_diagnostics:
            self._diagnostics_counter = Counter()
        self._num_broken_wire_pre_exception: int = 5

    def start(self) -> None:
        """
        Start the load cell sensor.

        If using I2C Mode, it opens the I2C connection using SMBus, waits briefly for hardware stabilization,
        and sets the streaming flag to True.
        """
        self._smbus = SMBus(self._bus)
        time.sleep(1)
        self._is_streaming = True

    def reset(self) -> None:
        """
        Reset the load cell calibration.

        Resets the calibration offset to the zero value and marks the sensor as uncalibrated.
        """
        self._calibration_offset = self._zero_calibration_offset
        self._is_calibrated = False

    def update(
        self,
        calibration_offset: Optional[npt.NDArray[np.double]] = None,
        data_callback: Optional[Callable[..., npt.NDArray[np.uint16]]] = None,
    ) -> None:
        """
        Query the load cell for the latest data and update internal state.

        Reads raw ADC data (either via a provided callback or by reading from I2C),
        converts it to engineering units using the calibration matrix, amplifier gain,
        and excitation voltage, and subtracts any calibration offset.

        Args:
            calibration_offset (Optional[npt.NDArray[np.double]], optional):
                An offset to subtract from the processed data. If None, uses the current calibration offset.
            data_callback (Optional[Callable[..., npt.NDArray[np.uint8]]], optional):
                A callback function to provide raw data. If not provided, the sensor's internal i2c method is used.

        Raises:
            ValueError: If the update method fails due to misconfiguration.
        """
        data = data_callback() if data_callback else self._read_compressed_strain()

        if self._enable_diagnostics:
            self.check_data(data)

        if calibration_offset is None:
            calibration_offset = self._calibration_offset

        signed_data = ((data - self.OFFSET) / self.ADC_RANGE) * self._exc
        coupled_data = signed_data * 1000 / (self._exc * self._amp_gain)

        # Process the data using the calibration matrix and subtract the offset.
        self._data = np.transpose(a=self._calibration_matrix.dot(b=np.transpose(a=coupled_data))) - calibration_offset

    def check_data(self, data: npt.NDArray[np.uint16]) -> None:
        """
        Watches raw values from the load cell to try to catch broken wires.
        Symptom is indicated by saturation at either max or min ADC values.
        """
        ADC_saturated_high = np.any(data == self.ADC_RANGE)  # Use np.any for NumPy arrays
        ADC_saturated_low = np.any(data == 0)  # Use np.any for NumPy arrays
        concerning_data_found = bool(ADC_saturated_high or ADC_saturated_low)
        self._diagnostics_counter.update(concerning_data_found)
        if self._diagnostics_counter.current_count >= self._num_broken_wire_pre_exception:
            raise LoadcellBrokenWireDetectedException(
                f"[{self.__repr__()}] Consistent saturation in readings, check wiring. ADC values: {self._data}."
            )

    def calibrate(
        self,
        number_of_iterations: int = 2000,
        reset: bool = False,
        data_callback: Optional[Callable[[], npt.NDArray[np.uint16]]] = None,
    ) -> None:
        """
        Perform a zeroing (calibration) routine for the load cell.

        This method obtains an initial zero-load reading that is subtracted from subsequent
        measurements. If the sensor has already been calibrated and 'reset' is False, a log message
        is displayed.

        Args:
            number_of_iterations (int, optional): Number of iterations to average for calibration.
                Defaults to 2000.
            reset (bool, optional): If True, forces recalibration by resetting the current calibration.
                Defaults to False.
            data_callback (Optional[Callable[[], npt.NDArray[np.uint8]]], optional): Optional callback
                to provide raw data. Defaults to None.
        """
        if not self.is_calibrated:
            LOGGER.info(
                f"[{self.__repr__()}] Initiating zeroing routine, please ensure that there is no ground contact force."
            )
            input("Press any key to start.")

            self.update(data_callback=data_callback)
            self._calibration_offset = self._data

            for _ in range(number_of_iterations):
                self.update(
                    calibration_offset=self._zero_calibration_offset,
                    data_callback=data_callback,
                )
                iterative_calibration_offset = self._data
                self._calibration_offset = (iterative_calibration_offset + self._calibration_offset) / 2.0

            self._is_calibrated = True
            LOGGER.info(f"[{self.__repr__()}] Calibration routine complete.")

        elif reset:
            self.reset()
            self.calibrate()
        else:
            LOGGER.info(
                f"[{self.__repr__()}] Loadcell has already been zeroed. "
                "To recalibrate, set reset=True in the calibrate method or call reset() first."
            )

    def stop(self) -> None:
        """
        Stop the load cell sensor.

        Sets the streaming flag to False and closes the I2C connection if it is open.
        """
        self._is_streaming = False
        if hasattr(self, "_smbus"):
            self._smbus.close()

    def _read_compressed_strain(self) -> npt.NDArray[np.uint16]:
        """
        Read and unpack compressed strain data from the sensor.

        This method reads a block of data from the sensor via I2C and then unpacks it
        using the compressed strain format. If multiple read attempts fail, a
        LoadcellNotRespondingException is raised.

        Returns:
            Any: The unpacked strain data.
        """
        try:
            data = self._smbus.read_i2c_block_data(self._i2c_address, DEPHY_AMPLIFIER_MEMORY_CHANNELS.CH1_H, 10)
            self.failed_reads = 0
        except OSError:
            self.failed_reads += 1

            if self.failed_reads >= 5:
                raise LoadcellNotRespondingException("Load cell unresponsive.") from None

        return self._unpack_compressed_strain(np.array(object=data, dtype=np.uint8))

    @staticmethod
    def _unpack_uncompressed_strain(data: npt.NDArray[np.uint8]) -> npt.NDArray[np.uint16]:
        """
        Unpack raw ADC data using the uncompressed format.

        This method is used for older versions of the strain amplifier firmware (pre-2017).

        Args:
            data (npt.NDArray[np.uint8]): Raw data read from the sensor.

        Returns:
            npt.NDArray[np.uint16]: An array containing the unpacked values for 6 channels.
        """
        ch1 = (data[0] << 8) | data[1]
        ch2 = (data[2] << 8) | data[3]
        ch3 = (data[4] << 8) | data[5]
        ch4 = (data[6] << 8) | data[7]
        ch5 = (data[8] << 8) | data[9]
        ch6 = (data[10] << 8) | data[11]
        return np.array(object=[ch1, ch2, ch3, ch4, ch5, ch6])

    @staticmethod
    def _unpack_compressed_strain(data: npt.NDArray[np.uint8]) -> npt.NDArray[np.uint16]:
        """
        Unpack raw ADC data using the compressed format.

        This method is used for more recent versions of the strain amplifier firmware.

        Args:
            data (npt.NDArray[np.uint8]): Raw data read from the sensor.

        Returns:
            npt.NDArray[np.uint16]: An array containing the unpacked values for 6 channels.
        """
        return np.array(
            object=[
                (data[0] << 4) | ((data[1] >> 4) & 0x0F),
                ((data[1] << 8) & 0x0F00) | data[2],
                (data[3] << 4) | ((data[4] >> 4) & 0x0F),
                ((data[4] << 8) & 0x0F00) | data[5],
                (data[6] << 4) | ((data[7] >> 4) & 0x0F),
                ((data[7] << 8) & 0x0F00) | data[8],
            ]
        )

    @property
    def is_calibrated(self) -> bool:
        """
        Indicates whether the load cell has been calibrated (zeroed).

        Returns:
            bool: True if the calibration routine has been successfully completed; otherwise, False.
        """
        return self._is_calibrated

    @property
    def is_streaming(self) -> bool:
        """
        Check if the load cell is currently streaming data.

        Returns:
            bool: True if streaming; otherwise, False.
        """
        return self._is_streaming

    @property
    def fx(self) -> float:
        """
        Get the latest force in the x (medial/lateral) direction in Newtons.

        For the standard OSL setup, this value is positive towards the user's right.

        Returns:
            float: Force (N) along the x-axis.
        """
        return self.data[0]

    @property
    def fy(self) -> float:
        """
        Get the latest force in the y (anterior/posterior) direction in Newtons.

        For the standard OSL setup, this value is positive in the posterior direction.

        Returns:
            float: Force (N) along the y-axis.
        """
        return self.data[1]

    @property
    def fz(self) -> float:
        """
        Get the latest force in the z (vertical) direction in Newtons.

        For the standard OSL setup, this value is positive downwards. In quiet standing,
        a negative Fz value is expected.

        Returns:
            float: Force (N) along the z-axis.
        """
        return self.data[2]

    @property
    def mx(self) -> float:
        """
        Get the latest moment about the x (medial/lateral) axis in Nm.

        For the standard OSL setup, this moment is positive towards the user's right.

        Returns:
            float: Moment (Nm) about the x-axis.
        """
        return self.data[3]

    @property
    def my(self) -> float:
        """
        Get the latest moment about the y (anterior/posterior) axis in Nm.

        For the standard OSL setup, this moment is positive in the posterior direction.

        Returns:
            float: Moment (Nm) about the y-axis.
        """
        return self.data[4]

    @property
    def mz(self) -> float:
        """
        Get the latest moment about the z (vertical) axis in Nm.

        For the standard OSL setup, this moment is positive towards the ground.

        Returns:
            float: Moment (Nm) about the z-axis.
        """
        return self.data[5]

    @property
    def data(self) -> list[float]:
        """
        Get the latest processed load cell data.

        Returns:
            list[float]: A 1D vector containing [Fx, Fy, Fz, Mx, My, Mz], where forces are in Newtons and moments in Nm.
        """
        if self._data is not None:
            return list(map(float, self._data[0].tolist()))
        else:
            return list(map(float, self._zero_calibration_offset.tolist()))

data property

Get the latest processed load cell data.

Returns:

Type Description
list[float]

list[float]: A 1D vector containing [Fx, Fy, Fz, Mx, My, Mz], where forces are in Newtons and moments in Nm.

fx property

Get the latest force in the x (medial/lateral) direction in Newtons.

For the standard OSL setup, this value is positive towards the user's right.

Returns:

Name Type Description
float float

Force (N) along the x-axis.

fy property

Get the latest force in the y (anterior/posterior) direction in Newtons.

For the standard OSL setup, this value is positive in the posterior direction.

Returns:

Name Type Description
float float

Force (N) along the y-axis.

fz property

Get the latest force in the z (vertical) direction in Newtons.

For the standard OSL setup, this value is positive downwards. In quiet standing, a negative Fz value is expected.

Returns:

Name Type Description
float float

Force (N) along the z-axis.

is_calibrated property

Indicates whether the load cell has been calibrated (zeroed).

Returns:

Name Type Description
bool bool

True if the calibration routine has been successfully completed; otherwise, False.

is_streaming property

Check if the load cell is currently streaming data.

Returns:

Name Type Description
bool bool

True if streaming; otherwise, False.

mx property

Get the latest moment about the x (medial/lateral) axis in Nm.

For the standard OSL setup, this moment is positive towards the user's right.

Returns:

Name Type Description
float float

Moment (Nm) about the x-axis.

my property

Get the latest moment about the y (anterior/posterior) axis in Nm.

For the standard OSL setup, this moment is positive in the posterior direction.

Returns:

Name Type Description
float float

Moment (Nm) about the y-axis.

mz property

Get the latest moment about the z (vertical) axis in Nm.

For the standard OSL setup, this moment is positive towards the ground.

Returns:

Name Type Description
float float

Moment (Nm) about the z-axis.

__init__(calibration_matrix, tag='DephyLoadcellAmplifier', amp_gain=125.0, exc=5.0, bus=1, i2c_address=102, offline=False, enable_diagnostics=True)

Initialize the Dephy loadcell amplifier.

Validates the provided parameters and initializes internal variables for data acquisition, calibration, and streaming.

Parameters:

Name Type Description Default
calibration_matrix NDArray[double]

A 6x6 calibration matrix.

required
tag str

A tag for identifying the load cell instance. Defaults to "DephyLoadcellAmplifier".

'DephyLoadcellAmplifier'
amp_gain float

Amplifier gain; must be greater than 0. Defaults to 125.0.

125.0
exc float

Excitation voltage; must be greater than 0. Defaults to 5.0.

5.0
bus int

I2C bus number to use. Defaults to 1.

1
i2c_address int

I2C address of the strain amplifier. Defaults to 0x66.

102

Raises:

Type Description
TypeError

If calibration_matrix is not a 6x6 array.

ValueError

If amp_gain or exc are not greater than 0.

Source code in opensourceleg/sensors/loadcell.py
def __init__(
    self,
    calibration_matrix: npt.NDArray[np.double],
    tag: str = "DephyLoadcellAmplifier",
    amp_gain: float = 125.0,
    exc: float = 5.0,
    bus: int = 1,
    i2c_address: int = 0x66,
    offline: bool = False,
    enable_diagnostics: bool = True,
) -> None:
    """
    Initialize the Dephy loadcell amplifier.

    Validates the provided parameters and initializes internal variables for data
    acquisition, calibration, and streaming.

    Args:
        calibration_matrix (npt.NDArray[np.double]): A 6x6 calibration matrix.
        tag (str, optional): A tag for identifying the load cell instance. Defaults to "DephyLoadcellAmplifier".
        amp_gain (float, optional): Amplifier gain; must be greater than 0. Defaults to 125.0.
        exc (float, optional): Excitation voltage; must be greater than 0. Defaults to 5.0.
        bus (int, optional): I2C bus number to use. Defaults to 1.
        i2c_address (int, optional): I2C address of the strain amplifier. Defaults to 0x66.

    Raises:
        TypeError: If calibration_matrix is not a 6x6 array.
        ValueError: If amp_gain or exc are not greater than 0.
    """
    super().__init__(tag=tag, offline=offline)

    # Validate input parameters.
    if calibration_matrix.shape != (6, 6):
        LOGGER.info(f"[{self.__repr__()}] calibration_matrix must be a 6x6 array of np.double.")
        raise TypeError("calibration_matrix must be a 6x6 array of np.double.")
    if amp_gain <= 0:
        LOGGER.info(f"[{self.__repr__()}] amp_gain must be a floating point value greater than 0.")
        raise ValueError("amp_gain must be a floating point value greater than 0.")
    if exc <= 0:
        LOGGER.info(f"[{self.__repr__()}] exc must be a floating point value greater than 0.")
        raise ValueError("exc must be a floating point value greater than 0.")

    self._amp_gain: float = amp_gain
    self._exc: float = exc

    self._bus = bus
    self._i2c_address = i2c_address

    self._calibration_matrix = calibration_matrix

    self._data: npt.NDArray[np.double] = np.zeros(shape=(1, 6), dtype=np.double)
    self._prev_data: npt.NDArray[np.double] = self._data
    self._failed_reads = 0

    self._calibration_offset: npt.NDArray[np.double] = np.zeros(shape=(1, 6), dtype=np.double)
    self._zero_calibration_offset: npt.NDArray[np.double] = self._calibration_offset
    self._is_calibrated: bool = False
    self._is_streaming: bool = False
    self._enable_diagnostics: bool = enable_diagnostics
    self._data_potentially_invalid: bool = False
    if self._enable_diagnostics:
        self._diagnostics_counter = Counter()
    self._num_broken_wire_pre_exception: int = 5

calibrate(number_of_iterations=2000, reset=False, data_callback=None)

Perform a zeroing (calibration) routine for the load cell.

This method obtains an initial zero-load reading that is subtracted from subsequent measurements. If the sensor has already been calibrated and 'reset' is False, a log message is displayed.

Parameters:

Name Type Description Default
number_of_iterations int

Number of iterations to average for calibration. Defaults to 2000.

2000
reset bool

If True, forces recalibration by resetting the current calibration. Defaults to False.

False
data_callback Optional[Callable[[], NDArray[uint8]]]

Optional callback to provide raw data. Defaults to None.

None
Source code in opensourceleg/sensors/loadcell.py
def calibrate(
    self,
    number_of_iterations: int = 2000,
    reset: bool = False,
    data_callback: Optional[Callable[[], npt.NDArray[np.uint16]]] = None,
) -> None:
    """
    Perform a zeroing (calibration) routine for the load cell.

    This method obtains an initial zero-load reading that is subtracted from subsequent
    measurements. If the sensor has already been calibrated and 'reset' is False, a log message
    is displayed.

    Args:
        number_of_iterations (int, optional): Number of iterations to average for calibration.
            Defaults to 2000.
        reset (bool, optional): If True, forces recalibration by resetting the current calibration.
            Defaults to False.
        data_callback (Optional[Callable[[], npt.NDArray[np.uint8]]], optional): Optional callback
            to provide raw data. Defaults to None.
    """
    if not self.is_calibrated:
        LOGGER.info(
            f"[{self.__repr__()}] Initiating zeroing routine, please ensure that there is no ground contact force."
        )
        input("Press any key to start.")

        self.update(data_callback=data_callback)
        self._calibration_offset = self._data

        for _ in range(number_of_iterations):
            self.update(
                calibration_offset=self._zero_calibration_offset,
                data_callback=data_callback,
            )
            iterative_calibration_offset = self._data
            self._calibration_offset = (iterative_calibration_offset + self._calibration_offset) / 2.0

        self._is_calibrated = True
        LOGGER.info(f"[{self.__repr__()}] Calibration routine complete.")

    elif reset:
        self.reset()
        self.calibrate()
    else:
        LOGGER.info(
            f"[{self.__repr__()}] Loadcell has already been zeroed. "
            "To recalibrate, set reset=True in the calibrate method or call reset() first."
        )

check_data(data)

Watches raw values from the load cell to try to catch broken wires. Symptom is indicated by saturation at either max or min ADC values.

Source code in opensourceleg/sensors/loadcell.py
def check_data(self, data: npt.NDArray[np.uint16]) -> None:
    """
    Watches raw values from the load cell to try to catch broken wires.
    Symptom is indicated by saturation at either max or min ADC values.
    """
    ADC_saturated_high = np.any(data == self.ADC_RANGE)  # Use np.any for NumPy arrays
    ADC_saturated_low = np.any(data == 0)  # Use np.any for NumPy arrays
    concerning_data_found = bool(ADC_saturated_high or ADC_saturated_low)
    self._diagnostics_counter.update(concerning_data_found)
    if self._diagnostics_counter.current_count >= self._num_broken_wire_pre_exception:
        raise LoadcellBrokenWireDetectedException(
            f"[{self.__repr__()}] Consistent saturation in readings, check wiring. ADC values: {self._data}."
        )

reset()

Reset the load cell calibration.

Resets the calibration offset to the zero value and marks the sensor as uncalibrated.

Source code in opensourceleg/sensors/loadcell.py
def reset(self) -> None:
    """
    Reset the load cell calibration.

    Resets the calibration offset to the zero value and marks the sensor as uncalibrated.
    """
    self._calibration_offset = self._zero_calibration_offset
    self._is_calibrated = False

start()

Start the load cell sensor.

If using I2C Mode, it opens the I2C connection using SMBus, waits briefly for hardware stabilization, and sets the streaming flag to True.

Source code in opensourceleg/sensors/loadcell.py
def start(self) -> None:
    """
    Start the load cell sensor.

    If using I2C Mode, it opens the I2C connection using SMBus, waits briefly for hardware stabilization,
    and sets the streaming flag to True.
    """
    self._smbus = SMBus(self._bus)
    time.sleep(1)
    self._is_streaming = True

stop()

Stop the load cell sensor.

Sets the streaming flag to False and closes the I2C connection if it is open.

Source code in opensourceleg/sensors/loadcell.py
def stop(self) -> None:
    """
    Stop the load cell sensor.

    Sets the streaming flag to False and closes the I2C connection if it is open.
    """
    self._is_streaming = False
    if hasattr(self, "_smbus"):
        self._smbus.close()

update(calibration_offset=None, data_callback=None)

Query the load cell for the latest data and update internal state.

Reads raw ADC data (either via a provided callback or by reading from I2C), converts it to engineering units using the calibration matrix, amplifier gain, and excitation voltage, and subtracts any calibration offset.

Parameters:

Name Type Description Default
calibration_offset Optional[NDArray[double]]

An offset to subtract from the processed data. If None, uses the current calibration offset.

None
data_callback Optional[Callable[..., NDArray[uint8]]]

A callback function to provide raw data. If not provided, the sensor's internal i2c method is used.

None

Raises:

Type Description
ValueError

If the update method fails due to misconfiguration.

Source code in opensourceleg/sensors/loadcell.py
def update(
    self,
    calibration_offset: Optional[npt.NDArray[np.double]] = None,
    data_callback: Optional[Callable[..., npt.NDArray[np.uint16]]] = None,
) -> None:
    """
    Query the load cell for the latest data and update internal state.

    Reads raw ADC data (either via a provided callback or by reading from I2C),
    converts it to engineering units using the calibration matrix, amplifier gain,
    and excitation voltage, and subtracts any calibration offset.

    Args:
        calibration_offset (Optional[npt.NDArray[np.double]], optional):
            An offset to subtract from the processed data. If None, uses the current calibration offset.
        data_callback (Optional[Callable[..., npt.NDArray[np.uint8]]], optional):
            A callback function to provide raw data. If not provided, the sensor's internal i2c method is used.

    Raises:
        ValueError: If the update method fails due to misconfiguration.
    """
    data = data_callback() if data_callback else self._read_compressed_strain()

    if self._enable_diagnostics:
        self.check_data(data)

    if calibration_offset is None:
        calibration_offset = self._calibration_offset

    signed_data = ((data - self.OFFSET) / self.ADC_RANGE) * self._exc
    coupled_data = signed_data * 1000 / (self._exc * self._amp_gain)

    # Process the data using the calibration matrix and subtract the offset.
    self._data = np.transpose(a=self._calibration_matrix.dot(b=np.transpose(a=coupled_data))) - calibration_offset

LoadcellBrokenWireDetectedException

Bases: Exception

Exception raised when a broken wire is detected in the load cell. Indicated by saturated ADC values (0 or 4095).

Attributes:

Name Type Description
message str

Description of the error.

Source code in opensourceleg/sensors/loadcell.py
class LoadcellBrokenWireDetectedException(Exception):
    """
    Exception raised when a broken wire is detected in the load cell.
    Indicated by saturated ADC values (0 or 4095).

    Attributes:
        message (str): Description of the error.
    """

    def __init__(self, message: str = "Load cell broken wire detected.") -> None:
        """
        Initialize the LoadcellBrokenWireDetectedException.

        Args:
            message (str, optional): Error message. Defaults to "Load cell broken wire detected.".
        """
        super().__init__(message)

__init__(message='Load cell broken wire detected.')

Initialize the LoadcellBrokenWireDetectedException.

Parameters:

Name Type Description Default
message str

Error message. Defaults to "Load cell broken wire detected.".

'Load cell broken wire detected.'
Source code in opensourceleg/sensors/loadcell.py
def __init__(self, message: str = "Load cell broken wire detected.") -> None:
    """
    Initialize the LoadcellBrokenWireDetectedException.

    Args:
        message (str, optional): Error message. Defaults to "Load cell broken wire detected.".
    """
    super().__init__(message)

LoadcellNotRespondingException

Bases: Exception

Exception raised when the load cell fails to respond.

Attributes:

Name Type Description
message str

Description of the error.

Source code in opensourceleg/sensors/loadcell.py
class LoadcellNotRespondingException(Exception):
    """
    Exception raised when the load cell fails to respond.

    Attributes:
        message (str): Description of the error.
    """

    def __init__(self, message: str = "Load cell unresponsive.") -> None:
        """
        Initialize the LoadcellNotRespondingException.

        Args:
            message (str, optional): Error message. Defaults to "Load cell unresponsive.".
        """
        super().__init__(message)

__init__(message='Load cell unresponsive.')

Initialize the LoadcellNotRespondingException.

Parameters:

Name Type Description Default
message str

Error message. Defaults to "Load cell unresponsive.".

'Load cell unresponsive.'
Source code in opensourceleg/sensors/loadcell.py
def __init__(self, message: str = "Load cell unresponsive.") -> None:
    """
    Initialize the LoadcellNotRespondingException.

    Args:
        message (str, optional): Error message. Defaults to "Load cell unresponsive.".
    """
    super().__init__(message)

NBLoadcellDAQ

Bases: LoadcellBase

Implementation of a load cell DAQ system using the ADS131M0x ADC.

This class provides methods for acquiring, calibrating, and processing load cell data. It uses an ADC to read raw data, applies a calibration matrix, and computes forces and moments.

Attributes:

Name Type Description
calibration_matrix ndarray

A matrix used to convert raw ADC data into forces and moments.

excitation_voltage float

The excitation voltage applied to the load cell.

amp_gain ndarray

Amplifier gain values for each channel.

adc ADS131M0x

The ADC instance used for data acquisition.

is_calibrated bool

Indicates whether the load cell has been calibrated.

is_streaming bool

Indicates whether the ADC is currently streaming data.

Source code in opensourceleg/sensors/loadcell.py
class NBLoadcellDAQ(LoadcellBase):
    """
    Implementation of a load cell DAQ system using the ADS131M0x ADC.

    This class provides methods for acquiring, calibrating, and processing load cell data.
    It uses an ADC to read raw data, applies a calibration matrix, and computes forces and moments.

    Attributes:
        calibration_matrix (np.ndarray): A matrix used to convert raw ADC data into forces and moments.
        excitation_voltage (float): The excitation voltage applied to the load cell.
        amp_gain (np.ndarray): Amplifier gain values for each channel.
        adc (ADS131M0x): The ADC instance used for data acquisition.
        is_calibrated (bool): Indicates whether the load cell has been calibrated.
        is_streaming (bool): Indicates whether the ADC is currently streaming data.
    """

    def __init__(
        self,
        calibration_matrix: npt.NDArray[np.double],
        tag: str = "NBLoadcellDAQ",
        excitation_voltage: float = 5.0,
        amp_gain: Optional[list[int]] = None,
        offline: bool = False,
        **kwargs: Any,
    ) -> None:
        """
        Initialize the NBLoadcellDAQ instance.

        Args:
            calibration_matrix (np.ndarray): A matrix used to convert raw ADC data into forces and moments.
            tag (str): Identifier for the load cell instance. Defaults to 'NBLoadcellDAQ'.
            excitation_voltage (float): The excitation voltage applied to the load cell. Defaults to 5.0 V.
            amp_gain (list[int): Amplifier gain values for each channel. Defaults to [34, 34, 34, 151, 151, 151].
            offline (bool): If True, the load cell operates in offline mode. Defaults to False.
            **kwargs: Additional arguments passed to the ADS131M0x ADC instance.
        """
        if amp_gain is None:
            amp_gain = [34, 34, 34, 151, 151, 151]
        super().__init__(tag=tag, offline=offline)

        self._adc = ADS131M0x(**kwargs)
        self.calibration_matrix = calibration_matrix
        self.excitation_voltage = excitation_voltage
        self._offset = np.zeros(self.adc.num_channels)
        self.amp_gain = np.array(amp_gain)
        self._is_calibrated = False

    @property
    def adc(self) -> ADS131M0x:
        """
        Get the ADC instance used for data acquisition.

        Returns:
            ADS131M0x: The ADC instance.
        """
        return self._adc

    def __repr__(self) -> str:
        return "Loadcell"

    @property
    def is_streaming(self) -> bool:
        """
        Check if the ADC is currently streaming data.

        Returns:
            bool: True if the ADC is streaming, False otherwise.
        """
        return self.adc._streaming

    def start(self) -> None:
        """
        Start the load cell DAQ system.

        This method initializes the ADC and begins data acquisition.
        """
        LOGGER.info(f"[{self.__repr__()}] Starting data acquisition...")
        self.adc.start()

    def stop(self) -> None:
        """
        Stop the load cell DAQ system.

        This method stops the ADC and ends data acquisition.
        """
        LOGGER.info(f"[{self.__repr__()}] Stopping data acquisition...")
        self.adc.stop()

    def update(self) -> None:
        """
        Update the load cell data.

        Reads the latest data from the ADC, applies amplifier gains and calibration offsets,
        and computes forces and moments using the calibration matrix.
        """
        self.adc.update()

        # Apply calibration offsets and amplifier gains
        coupled = self.adc.data - self._offset
        coupled[1::2] *= -1  # Invert odd-indexed channels for correct orientation

        gains = self.amp_gain * self.adc.gains
        normalized = coupled / (self.excitation_voltage * gains)

        # Compute forces and moments using the calibration matrix
        self._data = self.calibration_matrix @ normalized

    def reset(self) -> None:
        """
        Reset the load cell DAQ system.

        Resets the ADC and clears any calibration offsets.
        """
        LOGGER.info(f"[{self.__repr__()}] Resetting calibration offsets...")
        self.adc.reset()
        self._offset = np.zeros(self.adc.num_channels)
        self._is_calibrated = False

    def calibrate(self, n_samples: int = 1024) -> None:
        """
        Perform a calibration routine to zero the load cell.

        This method determines the zero-load offset by averaging multiple samples
        and stores it for subsequent data processing.

        Args:
            n_samples (int, optional): Number of samples to average for calibration. Defaults to 1024.
        """
        LOGGER.info(f"[{self.__repr__()}] Calibrating ADS131M0x...")
        self.adc.calibrate()
        LOGGER.info(f"[{self.__repr__()}] Starting calibration with {n_samples} samples...")
        offsets = np.empty((n_samples, self.adc.num_channels))

        for i in range(n_samples):
            self.adc.update()
            offsets[i] = self.adc.data

        self._offset = offsets.mean(axis=0)
        self._is_calibrated = True
        LOGGER.info(f"[{self.__repr__()}] Calibration complete.")

    @property
    def is_calibrated(self) -> bool:
        """
        Check if the load cell has been calibrated.

        Returns:
            bool: True if the load cell has been calibrated, False otherwise.
        """
        return self._is_calibrated

    @property
    def data(self) -> Any:
        """
        Get the latest processed load cell data.

        Returns:
            np.ndarray: A 1D vector containing [Fx, Fy, Fz, Mx, My, Mz], where:
                - Fx, Fy, Fz are forces in Newtons.
                - Mx, My, Mz are moments in Newton-meters.
        """
        return self._data

    @property
    def fx(self) -> float:
        """
        Get the latest force in the x (medial/lateral) direction in Newtons.

        Returns:
            float: Force (N) along the x-axis.
        """
        return float(self.data[0])

    @property
    def fy(self) -> float:
        """
        Get the latest force in the y (anterior/posterior) direction in Newtons.

        Returns:
            float: Force (N) along the y-axis.
        """
        return float(self.data[1])

    @property
    def fz(self) -> float:
        """
        Get the latest force in the z (vertical) direction in Newtons.

        Returns:
            float: Force (N) along the z-axis.
        """
        return float(self.data[2])

    @property
    def mx(self) -> float:
        """
        Get the latest moment about the x (medial/lateral) axis in Nm.

        Returns:
            float: Moment (Nm) about the x-axis.
        """
        return float(self.data[3])

    @property
    def my(self) -> float:
        """
        Get the latest moment about the y (anterior/posterior) axis in Nm.

        Returns:
            float: Moment (Nm) about the y-axis.
        """
        return float(self.data[4])

    @property
    def mz(self) -> float:
        """
        Get the latest moment about the z (vertical) axis in Nm.

        Returns:
            float: Moment (Nm) about the z-axis.
        """
        return float(self.data[5])

adc property

Get the ADC instance used for data acquisition.

Returns:

Name Type Description
ADS131M0x ADS131M0x

The ADC instance.

data property

Get the latest processed load cell data.

Returns:

Type Description
Any

np.ndarray: A 1D vector containing [Fx, Fy, Fz, Mx, My, Mz], where: - Fx, Fy, Fz are forces in Newtons. - Mx, My, Mz are moments in Newton-meters.

fx property

Get the latest force in the x (medial/lateral) direction in Newtons.

Returns:

Name Type Description
float float

Force (N) along the x-axis.

fy property

Get the latest force in the y (anterior/posterior) direction in Newtons.

Returns:

Name Type Description
float float

Force (N) along the y-axis.

fz property

Get the latest force in the z (vertical) direction in Newtons.

Returns:

Name Type Description
float float

Force (N) along the z-axis.

is_calibrated property

Check if the load cell has been calibrated.

Returns:

Name Type Description
bool bool

True if the load cell has been calibrated, False otherwise.

is_streaming property

Check if the ADC is currently streaming data.

Returns:

Name Type Description
bool bool

True if the ADC is streaming, False otherwise.

mx property

Get the latest moment about the x (medial/lateral) axis in Nm.

Returns:

Name Type Description
float float

Moment (Nm) about the x-axis.

my property

Get the latest moment about the y (anterior/posterior) axis in Nm.

Returns:

Name Type Description
float float

Moment (Nm) about the y-axis.

mz property

Get the latest moment about the z (vertical) axis in Nm.

Returns:

Name Type Description
float float

Moment (Nm) about the z-axis.

__init__(calibration_matrix, tag='NBLoadcellDAQ', excitation_voltage=5.0, amp_gain=None, offline=False, **kwargs)

Initialize the NBLoadcellDAQ instance.

Parameters:

Name Type Description Default
calibration_matrix ndarray

A matrix used to convert raw ADC data into forces and moments.

required
tag str

Identifier for the load cell instance. Defaults to 'NBLoadcellDAQ'.

'NBLoadcellDAQ'
excitation_voltage float

The excitation voltage applied to the load cell. Defaults to 5.0 V.

5.0
amp_gain list[int

Amplifier gain values for each channel. Defaults to [34, 34, 34, 151, 151, 151].

None
offline bool

If True, the load cell operates in offline mode. Defaults to False.

False
**kwargs Any

Additional arguments passed to the ADS131M0x ADC instance.

{}
Source code in opensourceleg/sensors/loadcell.py
def __init__(
    self,
    calibration_matrix: npt.NDArray[np.double],
    tag: str = "NBLoadcellDAQ",
    excitation_voltage: float = 5.0,
    amp_gain: Optional[list[int]] = None,
    offline: bool = False,
    **kwargs: Any,
) -> None:
    """
    Initialize the NBLoadcellDAQ instance.

    Args:
        calibration_matrix (np.ndarray): A matrix used to convert raw ADC data into forces and moments.
        tag (str): Identifier for the load cell instance. Defaults to 'NBLoadcellDAQ'.
        excitation_voltage (float): The excitation voltage applied to the load cell. Defaults to 5.0 V.
        amp_gain (list[int): Amplifier gain values for each channel. Defaults to [34, 34, 34, 151, 151, 151].
        offline (bool): If True, the load cell operates in offline mode. Defaults to False.
        **kwargs: Additional arguments passed to the ADS131M0x ADC instance.
    """
    if amp_gain is None:
        amp_gain = [34, 34, 34, 151, 151, 151]
    super().__init__(tag=tag, offline=offline)

    self._adc = ADS131M0x(**kwargs)
    self.calibration_matrix = calibration_matrix
    self.excitation_voltage = excitation_voltage
    self._offset = np.zeros(self.adc.num_channels)
    self.amp_gain = np.array(amp_gain)
    self._is_calibrated = False

calibrate(n_samples=1024)

Perform a calibration routine to zero the load cell.

This method determines the zero-load offset by averaging multiple samples and stores it for subsequent data processing.

Parameters:

Name Type Description Default
n_samples int

Number of samples to average for calibration. Defaults to 1024.

1024
Source code in opensourceleg/sensors/loadcell.py
def calibrate(self, n_samples: int = 1024) -> None:
    """
    Perform a calibration routine to zero the load cell.

    This method determines the zero-load offset by averaging multiple samples
    and stores it for subsequent data processing.

    Args:
        n_samples (int, optional): Number of samples to average for calibration. Defaults to 1024.
    """
    LOGGER.info(f"[{self.__repr__()}] Calibrating ADS131M0x...")
    self.adc.calibrate()
    LOGGER.info(f"[{self.__repr__()}] Starting calibration with {n_samples} samples...")
    offsets = np.empty((n_samples, self.adc.num_channels))

    for i in range(n_samples):
        self.adc.update()
        offsets[i] = self.adc.data

    self._offset = offsets.mean(axis=0)
    self._is_calibrated = True
    LOGGER.info(f"[{self.__repr__()}] Calibration complete.")

reset()

Reset the load cell DAQ system.

Resets the ADC and clears any calibration offsets.

Source code in opensourceleg/sensors/loadcell.py
def reset(self) -> None:
    """
    Reset the load cell DAQ system.

    Resets the ADC and clears any calibration offsets.
    """
    LOGGER.info(f"[{self.__repr__()}] Resetting calibration offsets...")
    self.adc.reset()
    self._offset = np.zeros(self.adc.num_channels)
    self._is_calibrated = False

start()

Start the load cell DAQ system.

This method initializes the ADC and begins data acquisition.

Source code in opensourceleg/sensors/loadcell.py
def start(self) -> None:
    """
    Start the load cell DAQ system.

    This method initializes the ADC and begins data acquisition.
    """
    LOGGER.info(f"[{self.__repr__()}] Starting data acquisition...")
    self.adc.start()

stop()

Stop the load cell DAQ system.

This method stops the ADC and ends data acquisition.

Source code in opensourceleg/sensors/loadcell.py
def stop(self) -> None:
    """
    Stop the load cell DAQ system.

    This method stops the ADC and ends data acquisition.
    """
    LOGGER.info(f"[{self.__repr__()}] Stopping data acquisition...")
    self.adc.stop()

update()

Update the load cell data.

Reads the latest data from the ADC, applies amplifier gains and calibration offsets, and computes forces and moments using the calibration matrix.

Source code in opensourceleg/sensors/loadcell.py
def update(self) -> None:
    """
    Update the load cell data.

    Reads the latest data from the ADC, applies amplifier gains and calibration offsets,
    and computes forces and moments using the calibration matrix.
    """
    self.adc.update()

    # Apply calibration offsets and amplifier gains
    coupled = self.adc.data - self._offset
    coupled[1::2] *= -1  # Invert odd-indexed channels for correct orientation

    gains = self.amp_gain * self.adc.gains
    normalized = coupled / (self.excitation_voltage * gains)

    # Compute forces and moments using the calibration matrix
    self._data = self.calibration_matrix @ normalized